

Thomas Unger Head of Data Analyses and Simulation VUFO GmbH

May 18 – 19, 2022 | Würzburg

Insights from Accident Data: Possibilities and limitations of calculating accident avoidability, accident and injury severity

Thomas Unger, Henrik Liers, Stefan Babisch, Angela Schubert

May 18 – 19, 2022 | Würzburg

- Current accident situation (Germany)
- GIDAS
- Methodology
 - Prediction of future accident scenario
 - Analyses of the remaining accidents
 - Prediction of Mitigation effects
- Results & Conclusions

- Current accident situation (Germany)
- GIDAS
- Methodology
 - Prediction of future accident scenario
 - Analyses of the remaining accidents
 - Prediction of Mitigation effects
- Results & Conclusions

Germany's national road traffic accident statistics (2020):

• Total:

- 264,499 accidents with personal damage of which
 - **2,582** fatal accidents (1.0%), with **2,719** fatalities
 - 51,243 accidents (19.4%) with serious injuries
 - 210,674 accidents (79.6%) with slight injuries

Accidents with personal damage - Type of Accident regarding Location

Source: Federal Bureau of Statistics (DESTATIS). Fachserie 8 Reihe 7 – Verkehrsunfälle 2017., Wiesbaden, Germany 2018.

Thomas Unger, VUFO © 2022 carhs.training gmbh

Accidents with serious or fatal injuries - Type of Accident regarding Location

Source: Federal Bureau of Statistics (DESTATIS). Fachserie 8 Reihe 7 – Verkehrsunfälle 2017., Wiesbaden, Germany 2018.

Thomas Unger, VUFO © 2022 carhs.training gmbh

- Loss of control accidents in the current accident scenario still relevant
- These accidents have a higher severity especially on motorways and rural roads
- Turning and crossing traffic accidents become more and more important

- Current accident situation (Germany)
- GIDAS
- Methodology
 - Prediction of future accident scenario
 - Analyses of the remaining accidents
 - Prediction of Mitigation effects
- Results & Conclusions

≈ 2.000 accidents w/ personal damage/year since July 1999

- Analyzed are traffic accidents with:
 - at least one car (M1 / N1) involved
 - car must be involved in the accident causing situation (UTYPA or UTYPB).
- In total, **32,923 traffic accidents** could be identified in the GIDAS database
 - Issue 31.12.2021

SAFETYUPDATE

• Weighted towards the German Traffic Accident Statistics in 2020.

GERMAN IN-DEPTH ACCIDENT STU

Data is weighted towards the German accident statistics 2020.

Thomas Unger, VUFO © 2022 carhs.training gmbh

Data is weighted towards the German accident statistics 2020.

Data is weighted towards the German accident statistics 2020.

- Current accident situation (Germany)
- GIDAS
- Methodology
 - Prediction of future accident scenario
 - Analyses of the remaining accidents
 - Prediction of Mitigation effects
- Results & Conclusions

- Part I
 - Retrospective analysis of historical accident data
 - Police-recorded accidents on all German motorways
 - Motorway accidents out of the GIDAS database
- Part II
 - Definition of Level 2 and Level 3 vehicles
 - usage/activation rates of systems
 - market penetrations of various safety systems
 - system efficiencies
- Part III
 - Estimation of the effect on the German motorway accident scenario
 - Analyses regarding the remaining accidents
 - Estimation of the effect on the German motorway accident scenario
- Part IV
 - Analyses of the remaining accidents
 - Estimation of the injury risks

[1] Unger, T; Liers, H: Prediction of the expected accident scenario of future Level 2 and Level 3 cars on German motorways; IRCOBI 2019

Thomas Unger, VUFO © 2022 carhs.training gmbh

• SAE J3016 definitions:

SAFETYUPDATE

- modern vehicles already include functionalities, which fulfill the criteria of Level 2 automation.
- The first applications of Level 3 automation in vehicles will probably include motorway scenarios only.
- Question: What is the safety potential of Level 2 and Level 3 automation on motorways in Germany (baseline: current situation)
 - Are there blind spots of automated cars
 - Which effects are due to the vehicle fleet

	L2 motorway functions			L3 motorway functions		
Market penetration scenario	10.0%	20.0%	50.0%	10.0%	20.0%	50.0%
Integrated efficiency	depending on acident type / critical situation according to assumptions					
Usage rate	depending on single systems according to literature and assumptions			90%		
Motorway accidents involving M1/N1 cars [2017, 100%]	18318			18318		
Avoided accidents due to L2 functions [result of 50 randomly based variations]	653 ± 70	1,308 ± 112	3,271 ± 126	1,425 ± 156	2,804 ± 216	6.962 ± 215
Potential effect (acident avoidance)	3.6% ± 0.4%	7.1% ± 0.6%	17.9% ± 0.7%	7.8% ± 0.8%	15.3% ± 1.2%	38.0% ± 1.2%

Level 2 systems address many of the typical motorway situations

Beside the slow increase of the market penetration of such systems, the usage rate is one crucial factor that has a strong influence on the enhanced vehicle safety

- Current accident situation (Germany)
- GIDAS
- Methodology
 - Prediction of future accident scenario
 - Analyses of the remaining accidents
- Results & Conclusions

Level 2 and Level 3 vehicles

L2: 20%: 2020 50%: 2026

L3: 10%: 2028 20%: 2031 50%: 2037

- Optimistic market penetration scenario is assumed for the L3 motorway function.
 - market introduction phase (5 years with +0.5% /a)
 - penetration will steadily increase by +1% annually until 4.5%

Due to the market penetration rates, There will be a remaining accident scenario, maybe some "whitespots".

The remaining accidents are very complex (turning, crossing).

Analyses have to be done for development of avoiding systems and safety functionalities.

Source of data: Federal Bureau of Statistics (DESTATIS). Fachserie 8 Reihe 7 – Verkehrsunfälle 2017., Wiesbaden, Germany 2018.

Data is weighted towards the German accident statistics 2020.

- For different locations → different types of accidents / scenarios are ,relevant'
 - Urban: Mostly interactions between 2 (or even more) traffic participants, e.g. Crossing & Turning Scenarios → UTYP 3xx (5x in Top10), 6xx (3x in Top 10), 2xx (2x in Top 10)
 - Rural: Different Types as well, but especially Loss of Control Accidents (1xx, ranked first 3rd, >35%)
 - Motorway: Often Loss of Control (1xx) & Longitudinal Traffic Accidents (6xx), but also Other Accidents (7xx) with sudden physical inabilities or technical damages
- Clustering of scenarios regarding different aspects possible or even single case analyses, depending on requirements of the research task
- Available toolchain:
 - Criticality metrics (Time To Collision TTC and Trajectory-based criticality)
 - Determination of the Point Of No Return PONR for almost all cases out of the GIDAS-PCM

- Current accident situation (Germany)
- GIDAS
- Methodology
 - Prediction of future accident scenario
 - Analyses of the remaining accidents
 - Prediction of Mitigation effects
- Results & Conclusions

- Analyses of the Remaining accidents:
 - Criticality analyses
 - TTC (Time to Collision)
 - FSK (driving tube criticality)
 - PONR (Point of no return)
 - Severity analyses
 - Impact severity
 - Injury severity

Methodik Kritikalitätsberechnung Exemplarische Visualisierung eines GIDAS-PCM-Falles mit UTYP 321 Unfallskizze Unfalltyp 20 32° 10 y [m] -10 -20 -30 -40 -30 -20 -10 10 20 30 0 x [m]

Ŵ

Quelle: Gesamtverband der Deutschen Versicherungswirtschaft e.V.; Unfallforschung der Versicherer; Unfalltypen-Katalog, Stand: 08.01.2016

Criticality tool chain:

- **TTC** calculation -
- **Trajectory based criticality**
- Point Of No Return calculation

Development of new functions:

- Possible to implement connective systems
- **Counting of avoidable accidents**
- Sensor field analyses
- System action analyses
- Avoidance strategy assessment

Remaining Accident

- With first models, the accident severity can be estimated.
 - Estimation of the accident constellation (CrashConstellationPredictionSystem -CCoPS)
 - EES-Analyses resp. estimations
 - Estimation of Delta-V
 - Iterative calculation \rightarrow Injury risk functions with different input parameters
 - calculation model is available

VUFO GIDAS based EES Analyses

[1] https://www.ivi.fraunhofer.de/de/forschungsfelder/fahrzeug-und-antriebstechnik/fahrzeug-und-verkehrssicherheit/unfallsimulation/calculateees---eine-objektive-schaetzung.html [2] https://www.vufo.de/wp-content/uploads/2021/12/Praesentation_EES.pdf

Thomas Unger, VUFO © 2022 carhs.training gmbh

- Current accident situation (Germany)
- GIDAS
- Methodology
 - Prediction of future accident scenario
 - Analyses of the remaining accidents
 - Prediction of Mitigation effects
- Results & Conclusions

- Exemplary, an injury risk function considering following parameters was created:
 - Delta-V
 - Usage of Seatbelt
 - Crash weight (of the own vehicle)
 - Age group of the occupant (child / adult / elderly)
- The injury risk functions were grouped for different impact directions, here:
 - Frontal impact
 - Near side impact
- The parameters ,crash weight', ,usage of seatbelt' and ,age group' cannot be varied and are therefore determined as follows:
 - Sealtbelt fastened
 - Crash weight = 1,500 kg
 - Age group: Adult
- Delta-V and the impact direction can be influenced \rightarrow Challenge: Identify the "Best Case" (lowest injury risk)

- Delta-V and the impact direction can be influenced → Challenge: Identify the "Best Case" (lowest injury risk)
- In general, a reduction of Delta-V is desired to reduce the injury risk.
- Like the figures showed, a frontal impact is preferable to a side impact (at least for near side impacts).

- Current accident situation (Germany)
- GIDAS
- Methodology
 - Prediction of future accident scenario
 - Analyses of the remaining accidents
 - Prediction of Mitigation effects
- Results & Conclusions

Conclusion

- In a previous publication by VUFO, the potential of accident avoidance for different types of accidents on motorways has already been investigated [1].
- It is important to distinguish between the vehicles who caused the accident and other participants involved.
- This leads (or would lead) to a shift in the ranking of the types of accidents, depending on the rate of market penetration.
- Not all traffic accidents can be addressed with current assistance systems, especially not with Level 2 and 3.
- However, the remaining accidents provides indications for upcoming spots in the field of traffic accidents.

[1] Unger, T; Liers, H: Prediction of the expected accident scenario of future Level 2 and Level 3 cars on German motorways; IRCOBI 2019

- Important: Integral safety systems are still necessary in L2/L3
- Analyses of the remaining accidents needed
- **Black box:** accident severity estimation
 - many parameters which influence the injury/accident severity
 - some of them can be varied, some cannot.
 - Variable: EES, Delta-V or the impact direction
 - Fixed: Age of the person, weight of the vehicle or even the (non-) usage of the seatbelts
- With the "new" or remaining constellations / crash parameters the injury severity can be predicted (IRF)
- Depending on the new parameters the risk of being sdeverely injured could be decresing/increasing